<h3>Learning Objectives</h3><ul><li>Identify and describe the major categories of HVAC systems</li><li>Understand the advantages and limitations of each system type</li><li>Select appropriate system types based on building requirements</li></ul><h3>1.1 All-Air Systems</h3><p>All-air systems condition spaces using only air as the heat transfer medium. These systems centralize heating and cooling equipment, providing excellent filtration and humidity control.</p><h4>Constant Air Volume (CAV) Systems</h4><p>CAV systems deliver a fixed airflow rate to each zone, varying the supply air temperature to meet load changes. Key characteristics:</p><ul><li><strong>Single-Zone CAV:</strong> One thermostat controls one AHU serving one zone. Simple but limited flexibility.</li><li><strong>Multi-Zone CAV:</strong> Hot and cold decks mix air for multiple zones via zone dampers at the AHU.</li><li><strong>Terminal Reheat:</strong> Cool air is reheated at zone terminals - energy intensive but provides precise control.</li></ul><h4>Variable Air Volume (VAV) Systems</h4><p>VAV systems vary airflow to each zone while maintaining relatively constant supply air temperature. This approach offers significant energy savings over CAV systems.</p><ul><li><strong>Pressure-Independent VAV:</strong> Boxes with integral flow controllers maintain setpoint regardless of duct pressure fluctuations.</li><li><strong>Pressure-Dependent VAV:</strong> Simpler boxes where airflow varies with duct pressure - requires careful system balancing.</li><li><strong>Fan-Powered VAV:</strong> Series or parallel fan configurations maintain minimum airflow during low-load conditions.</li></ul><p>VAV terminals typically modulate from 100% to 30% of design airflow. Below minimum airflow, reheat may be required to prevent overcooling.</p><h4>Dual-Duct Systems</h4><p>Two parallel duct systems - one hot, one cold - supply mixing boxes at each zone. Provides excellent control but requires double the duct space.</p><h3>1.2 Air-Water Systems</h3><h4>Fan Coil Units (FCUs)</h4><p>Local fan-coil units receive chilled/hot water from a central plant. A separate DOAS provides ventilation.</p><ul><li><strong>Two-Pipe:</strong> One supply, one return - switchover between heating/cooling seasonally</li><li><strong>Four-Pipe:</strong> Separate heating and cooling coils - simultaneous heating/cooling capability</li></ul><h4>Active Chilled Beams</h4><p>Primary air induces room air across a chilled water coil. Critical: supply air must be dehumidified to prevent condensation.</p><h3>1.3 Unitary Systems</h3><h4>Variable Refrigerant Flow (VRF)</h4><ul><li><strong>Heat Pump VRF:</strong> All indoor units in heating or cooling mode simultaneously</li><li><strong>Heat Recovery VRF:</strong> Simultaneous heating and cooling in different zones</li><li><strong>Design:</strong> Refrigerant charge limits per ASHRAE 15, piping up to 540 ft, vertical lifts up to 160 ft</li></ul><h4>Water-Source Heat Pumps (WSHP)</h4><p>Individual heat pump units connected to common water loop at 60-90 deg F. Boiler adds heat when cold; cooling tower rejects when warm.</p><h3>1.4 System Selection</h3><table border="1" style="width:100%; border-collapse:collapse;"><tr><th>System</th><th>Best For</th><th>Pros</th><th>Cons</th></tr><tr><td>VAV</td><td>Offices, schools</td><td>Energy efficient, good zoning</td><td>Min ventilation at low loads</td></tr><tr><td>FCU+DOAS</td><td>Hotels, hospitals</td><td>Individual control</td><td>Maintenance in spaces</td></tr><tr><td>VRF</td><td>Retrofit</td><td>No ductwork, efficient</td><td>Refrigerant concerns</td></tr><tr><td>WSHP</td><td>Mixed loads</td><td>Heat recovery</td><td>Loop maintenance</td></tr></table>
HVAC System Design - Comprehensive Engineering Course
A college-level course covering HVAC system types, air distribution, duct and pipe sizing, fan and pump selection, and terminal unit design for mechanical engineers
Course Learning Objectives
Upon successful completion of this course, you will be able to:
- Identify and select appropriate HVAC system types for various building applications
- Design air distribution systems with proper diffuser selection and layout
- Size ductwork using equal friction, static regain, and velocity methods
- Specify duct materials and construction per SMACNA standards
- Calculate fitting equivalent lengths and total system pressure drop
- Select fans using performance curves and apply the fan affinity laws
- Design hydronic piping systems including primary-secondary arrangements
- Size pipes using Hazen-Williams and Darcy-Weisbach methods
- Select pumps and calculate total dynamic head requirements
- Specify air handling units with appropriate coils and filters
- Select terminal units including VAV boxes and fan coil units
- Address noise and vibration concerns in HVAC system design
Section 1: HVAC System Types Overview
Section 2: Air Distribution Fundamentals
<h3>Learning Objectives</h3><ul><li>Understand supply, return, and exhaust air distribution principles</li><li>Calculate air change rates and room air distribution effectiveness</li><li>Select appropriate diffuser types and layouts</li></ul><h3>2.1 Room Air Distribution</h3><h4>Air Changes Per Hour (ACH)</h4><p><strong>ACH = (CFM x 60) / Room Volume (ft3)</strong></p><p>Typical values: Offices 4-6 ACH, Conference rooms 8-12 ACH, Labs 6-12 ACH, ORs 15-25 ACH, Cleanrooms 20-600+ ACH</p><h4>Air Distribution Effectiveness (Ez)</h4><p>Per ASHRAE 62.1: Ez = 1.0 (ceiling supply cool air), Ez = 0.8 (ceiling warm air), Ez = 1.2 (displacement ventilation)</p><h3>2.2 Supply Air Distribution</h3><h4>Ceiling Diffusers</h4><ul><li><strong>Square/Rectangular:</strong> 1-4 way throw patterns. Use perforated face for VAV.</li><li><strong>Linear Slot:</strong> 1-4 slots, architectural appearance</li><li><strong>Perforated Face:</strong> Even, low-velocity - ideal for VAV, no dumping at low flows</li></ul><h4>Displacement Ventilation</h4><p>Low-velocity (50-70 fpm) supply at floor level, 63-65 deg F. Thermal plumes carry air to ceiling exhaust. 10-20% energy savings.</p><h3>2.3 Throw and Drop</h3><p>Throw (T) = distance to reach terminal velocity (50 fpm)</p><ul><li><strong>Cooling:</strong> T50 = 0.75-1.0 times distance to wall/adjacent diffuser</li><li><strong>Heating:</strong> T50 = 0.5-0.75 times characteristic length</li><li><strong>VAV:</strong> Select diffusers for 50% design airflow to prevent dumping</li></ul><h4>ADPI - Air Diffusion Performance Index</h4><p>Percentage of occupied zone within acceptable velocity and temperature. Target ADPI >= 80%.</p><h3>2.4 Return Air</h3><ul><li><strong>Ducted Return:</strong> Best sound control, required for labs/healthcare</li><li><strong>Plenum Return:</strong> Ceiling plenum as duct - lower cost, fire/smoke concerns</li></ul><p>Size return grilles for 300-500 fpm face velocity.</p><h3>2.5 Exhaust Systems</h3><ul><li><strong>General:</strong> Restrooms 75-100 CFM/fixture or 2 CFM/SF</li><li><strong>Lab:</strong> Fume hoods 100-150 fpm face velocity, total 10-15 ACH</li><li><strong>Kitchen:</strong> Type I hoods 150-550 CFM/linear foot</li></ul><h3>2.6 Pressure Relationships</h3><ul><li>Labs: -0.03 to -0.05 in. w.g. (negative to corridor)</li><li>Cleanrooms: +0.03 to +0.05 in. w.g. (positive)</li><li>Operating rooms: +0.01 to +0.03 in. w.g.</li><li>Isolation: Negative pressure with anteroom airlock</li></ul>
Section 3: Duct Sizing Methods
<h3>Learning Objectives</h3><ul><li>Apply equal friction, static regain, and velocity methods</li><li>Calculate friction losses in duct systems</li><li>Size supply, return, and exhaust ductwork</li></ul><h3>3.1 Equal Friction Method</h3><p>Most common method - maintains constant friction rate throughout system.</p><h4>Friction Rate Selection</h4><ul><li>Low-pressure (under 2 in. w.g.): 0.08-0.10 in./100 ft</li><li>Medium-pressure (2-6 in.): 0.10-0.25 in./100 ft</li><li>High-pressure (over 6 in.): 0.25-0.40 in./100 ft</li></ul><h4>Procedure</h4><ol><li>Determine CFM for each section from loads</li><li>Select friction rate based on system type</li><li>Use friction chart to find duct size</li><li>Verify velocity limits not exceeded</li><li>Calculate total pressure for longest path</li></ol><h3>3.2 Static Regain Method</h3><p>Sizes ducts so static pressure gain from velocity reduction equals friction loss in next section.</p><p><strong>Delta SP (regain) = R x (VP1 - VP2)</strong> where R = 0.5-0.75</p><p>Best for long runs, high-velocity systems, many branches at different distances.</p><h3>3.3 Velocity Method</h3><table border="1" style="width:100%;border-collapse:collapse;"><tr><th>Application</th><th>Main</th><th>Branch</th><th>Risers</th></tr><tr><td>Residence</td><td>600-900</td><td>500-700</td><td>500-700</td></tr><tr><td>Hotel</td><td>1000-1300</td><td>600-900</td><td>800-1200</td></tr><tr><td>Office</td><td>1200-1800</td><td>800-1200</td><td>1000-1600</td></tr><tr><td>Industrial</td><td>2000-3000</td><td>1500-2200</td><td>1500-2200</td></tr></table><h3>3.4 Duct Sizing Calculations</h3><h4>Equivalent Diameter (Rectangular)</h4><p><strong>De = 1.30 x (axb)^0.625 / (a+b)^0.25</strong></p><h4>Aspect Ratio</h4><ul><li>Optimal: 1:1 to 3:1</li><li>Maximum: 4:1</li><li>High ratios increase friction and cost</li></ul><h3>3.5 Example Problem</h3><p>Given: 5,000 CFM, 100 ft main, branches at 30/60/90 ft, 0.10 in./100 ft</p><p>Solution: Main 24 in. (1,590 fpm), After Branch 1 20 in. (1,375 fpm), After Branch 2 16 in. (1,075 fpm)</p><h3>3.6 Return/Exhaust Sizing</h3><p>Return: 80% of supply velocity (mains), 60-80% (branches)</p>
Section 4: Duct Materials and Construction
<h3>Learning Objectives</h3><ul><li>Select appropriate duct materials</li><li>Understand SMACNA construction standards</li><li>Specify proper insulation and liner</li></ul><h3>4.1 Galvanized Steel</h3><p>Most common commercial duct material. G60/G90 galvanized coating.</p><table border="1" style="width:100%;border-collapse:collapse;"><tr><th>Pressure Class</th><th>Gauge</th><th>Application</th></tr><tr><td>1/2 in.</td><td>26-24 ga</td><td>Low-pressure</td></tr><tr><td>1 in.</td><td>24-22 ga</td><td>Standard commercial</td></tr><tr><td>2 in.</td><td>22-20 ga</td><td>Medium-pressure VAV</td></tr><tr><td>3 in.</td><td>20-18 ga</td><td>High-pressure mains</td></tr></table><h4>Spiral Round Duct</h4><p>Lock-seam spiral: 3-14 in. = 26 ga, 16-26 in. = 24 ga, 28-50 in. = 22 ga. Lower leakage than rectangular.</p><h3>4.2 SMACNA Seal Classes</h3><table border="1" style="width:100%;border-collapse:collapse;"><tr><th>Class</th><th>Sealing</th><th>Application</th></tr><tr><td>A</td><td>All joints, seams, penetrations</td><td>Over 3 in. w.g.</td></tr><tr><td>B</td><td>Transverse joints, penetrations</td><td>2-3 in. w.g.</td></tr><tr><td>C</td><td>Transverse joints only</td><td>1-2 in. w.g.</td></tr></table><h4>Leakage Classes</h4><p>CL 6: Class A sealing, CL 12: Well-sealed, CL 48: Unsealed</p><h3>4.3 Fiberglass Duct Board</h3><p>Self-insulating R-4.2 to R-8. Max 2 in. w.g., 2,500 fpm. Not for hospitals.</p><h3>4.4 Flexible Duct</h3><ul><li>Max 5-6 ft length, fully extended</li><li>Support every 4 ft</li><li>Friction: 1.5x extended, 3x at 15% compression, 6x at 30%</li></ul><h3>4.5 Specialty Materials</h3><ul><li><strong>Stainless:</strong> Kitchen/lab exhaust, cleanroom (304/316)</li><li><strong>Aluminum:</strong> Cleanroom, food processing</li><li><strong>PVC/FRP:</strong> Chemical exhaust</li></ul><h3>4.6 Insulation</h3><h4>Exterior (Duct Wrap)</h4><p>Fiberglass R-4 to R-8 with FSK vapor barrier. ASHRAE 90.1: R-6 to R-8 in unconditioned spaces.</p><h4>Interior Liner</h4><p>1/2 to 2 in. fiberglass for acoustics. Must withstand velocity without erosion.</p><h3>4.7 Fire/Smoke Dampers</h3><ul><li><strong>Fire Damper:</strong> Fusible link (165 deg F) at fire barriers</li><li><strong>Smoke Damper:</strong> Detector signal at smoke barriers</li><li><strong>Combination:</strong> Both functions in one</li></ul>
Section 5: Duct Fittings and Equivalent Lengths
<h3>Learning Objectives</h3><ul><li>Calculate pressure losses through fittings</li><li>Apply equivalent length and loss coefficient methods</li><li>Design efficient duct layouts</li></ul><h3>5.1 Fitting Loss Methods</h3><ol><li><strong>Loss Coefficient (Co):</strong> Delta P = Co x VP</li><li><strong>Equivalent Length:</strong> Delta P = (Leq/100) x friction rate</li></ol><h3>5.2 Elbows</h3><table border="1" style="width:100%;border-collapse:collapse;"><tr><th>Elbow Type</th><th>Co</th><th>Eq. Length</th></tr><tr><td>90 deg square (no vanes)</td><td>1.2-1.5</td><td>75D</td></tr><tr><td>90 deg w/ single vanes</td><td>0.22</td><td>10D</td></tr><tr><td>90 deg w/ double vanes</td><td>0.15</td><td>7D</td></tr><tr><td>90 deg radius (R/W=1.5)</td><td>0.22</td><td>12D</td></tr><tr><td>45 deg</td><td>0.15-0.25</td><td>8D</td></tr></table><h4>Round Elbows</h4><p>5-piece 90 deg: Co=0.12, 3-piece: Co=0.14, Mitered: Co=1.2, 45 deg: Co=0.08</p><h3>5.3 Transitions</h3><table border="1" style="width:100%;border-collapse:collapse;"><tr><th>Type</th><th>Angle</th><th>Co</th></tr><tr><td>Converging (gradual)</td><td>15-30 deg</td><td>0.02-0.05</td></tr><tr><td>Converging (abrupt)</td><td>90 deg</td><td>0.50</td></tr><tr><td>Diverging (gradual)</td><td>15-20 deg</td><td>0.15-0.25</td></tr><tr><td>Diverging (abrupt)</td><td>90 deg</td><td>0.80-1.0</td></tr></table><p>Max angle: 20 deg expansion, 30 deg contraction</p><h3>5.4 Branch Fittings</h3><table border="1" style="width:100%;border-collapse:collapse;"><tr><th>Type</th><th>Straight Co</th><th>Branch Co</th></tr><tr><td>Tee straight-through</td><td>0.25-0.50</td><td>-</td></tr><tr><td>Tee branch</td><td>-</td><td>0.80-1.5</td></tr><tr><td>Tee w/ vanes</td><td>0.20</td><td>0.35</td></tr><tr><td>45-deg wye</td><td>-</td><td>0.30-0.50</td></tr></table><p>Wyes more efficient than tees.</p><h3>5.5 Other Fittings</h3><p>Dampers (open): Co=0.05-0.10. Entry from plenum: Co=0.50. Bell-mouth: Co=0.03-0.05. Exit to plenum: Co=1.0</p><h3>5.6 Total System Pressure</h3><ol><li>Identify longest/most restrictive path</li><li>Calculate straight duct friction</li><li>Add fitting losses</li><li>Include equipment (coils, filters, dampers)</li><li>Include terminal devices</li><li>Sum for total external static</li></ol><h3>5.7 Best Practices</h3><ul><li>Minimize fittings</li><li>Always use turning vanes in square elbows</li><li>3-5 diameters straight duct between fittings</li><li>Use wyes over tees</li><li>20 deg max expansion angle</li><li>4:1 max aspect ratio</li></ul>
Section 6: Fan Selection and Fan Laws
<h3>Learning Objectives</h3><ul><li>Read and apply fan performance curves</li><li>Select fans for CFM and static pressure requirements</li><li>Apply fan laws for speed, flow, and pressure changes</li><li>Calculate fan power and efficiency</li></ul><h3>6.1 Fan Types</h3><h4>Centrifugal</h4><table border="1" style="width:100%;border-collapse:collapse;"><tr><th>Blade</th><th>Efficiency</th><th>Application</th></tr><tr><td>Forward Curved</td><td>60-70%</td><td>Residential, small AHU</td></tr><tr><td>Backward Inclined</td><td>80%+</td><td>Commercial AHU</td></tr><tr><td>Airfoil</td><td>85%+</td><td>Large AHU, hospitals</td></tr><tr><td>Radial</td><td>Lower</td><td>Industrial, dirty air</td></tr></table><h4>Axial</h4><ul><li><strong>Propeller:</strong> High flow, under 0.5 in. w.g.</li><li><strong>Tube Axial:</strong> 1-3 in. w.g.</li><li><strong>Vane Axial:</strong> 2-6 in. w.g.</li></ul><h3>6.2 Fan Curves</h3><p>X-axis: CFM. Y-axis: Static Pressure and BHP. Efficiency contours show BEP.</p><h4>Selection Steps</h4><ol><li>Identify required CFM and SP</li><li>Add 10-15% for fouling/future</li><li>Select fan meeting requirements</li><li>Verify stable operating region</li><li>Confirm efficiency within 10% of peak</li><li>Check motor size</li></ol><h3>6.3 Fan Laws</h3><h4>Law 1: Flow</h4><p><strong>Q2/Q1 = N2/N1</strong> - Flow varies directly with speed</p><h4>Law 2: Pressure</h4><p><strong>P2/P1 = (N2/N1)^2</strong> - Pressure varies with speed squared</p><h4>Law 3: Power</h4><p><strong>HP2/HP1 = (N2/N1)^3</strong> - Power varies with speed cubed</p><h4>Example</h4><p>At 1,200 RPM: 10,000 CFM, 4 in. w.g., 15 HP</p><p>At 1,000 RPM (0.833 ratio): 8,330 CFM, 2.78 in. w.g., 8.7 HP</p><p>20% speed reduction = 49% power reduction!</p><h3>6.4 Fan Power</h3><p><strong>AHP = (CFM x SP) / 6356</strong></p><p><strong>BHP = AHP / efficiency</strong></p><h3>6.5 System Effect</h3><ul><li>Elbow at inlet: 10-25% capacity loss</li><li>No inlet duct: 5-15% loss</li><li>Elbow at discharge: 10-30% loss</li><li>Min 2.5 diameters straight duct at discharge</li></ul>
Section 7: Hydronic System Fundamentals
<h3>Learning Objectives</h3><ul><li>Understand two-pipe, four-pipe, primary-secondary arrangements</li><li>Calculate water flow rates from loads</li><li>Design for efficiency and controllability</li></ul><h3>7.1 System Configurations</h3><h4>Two-Pipe</h4><p>One supply, one return. Changeover or non-changeover. Cannot simultaneously heat and cool different zones.</p><h4>Four-Pipe</h4><p>Separate heating and cooling pipes. Higher cost but full flexibility. Required for hospitals, labs.</p><h3>7.2 Primary-Secondary Pumping</h3><p>Decouples production from distribution via common pipe.</p><ul><li><strong>Primary:</strong> Constant flow through chillers/boilers</li><li><strong>Secondary:</strong> Variable flow to loads</li><li><strong>Common pipe:</strong> Under 1 ft pressure drop</li></ul><h4>Variable Primary Flow</h4><p>Modern chillers handle variable flow directly. Min 33% flow. Bypass maintains minimum during low load.</p><h3>7.3 Flow Calculations</h3><p><strong>GPM = Q / (500 x Delta T)</strong></p><p>Where 500 = 60 min/hr x 8.33 lb/gal x 1.0 BTU/lb-F</p><table border="1" style="width:100%;border-collapse:collapse;"><tr><th>System</th><th>Supply</th><th>Delta T</th><th>GPM/ton</th></tr><tr><td>Chilled</td><td>42-45 F</td><td>10-14 F</td><td>2.4</td></tr><tr><td>Condenser</td><td>85 F</td><td>10 F</td><td>3.0</td></tr><tr><td>Hot Water</td><td>140-180 F</td><td>20-40 F</td><td>varies</td></tr></table><h3>7.4 Piping Arrangements</h3><ul><li><strong>Direct Return:</strong> Shortest path - unbalanced unless balanced</li><li><strong>Reverse Return:</strong> Equal path lengths - self-balancing</li></ul><h3>7.5 Expansion and Air</h3><h4>Tanks</h4><ul><li><strong>Compression:</strong> Air over water, larger</li><li><strong>Diaphragm:</strong> Membrane separates, smaller</li></ul><h4>Air Elimination</h4><p>Separators at pump discharge, auto vents at high points, manual vents at terminals.</p><h3>7.6 Valves</h3><ul><li><strong>Two-way:</strong> Variable flow, modulate to terminal</li><li><strong>Three-way:</strong> Constant flow, bypass when not needed</li><li><strong>PICV:</strong> Pressure-independent, maintains flow regardless of pressure</li></ul>
Section 8: Pipe Sizing Methods
<h3>Learning Objectives</h3><ul><li>Apply Hazen-Williams and Darcy-Weisbach equations</li><li>Understand velocity limits</li><li>Calculate friction losses and select sizes</li></ul><h3>8.1 Hazen-Williams</h3><p><strong>h_f = 10.44 x L x Q^1.85 / (C^1.85 x d^4.87)</strong></p><table border="1" style="width:100%;border-collapse:collapse;"><tr><th>Material</th><th>C (new)</th><th>C (aged)</th></tr><tr><td>Copper</td><td>140-150</td><td>130</td></tr><tr><td>Steel</td><td>140</td><td>100-120</td></tr><tr><td>PVC</td><td>150</td><td>150</td></tr></table><p>Typical design: 4 ft/100 ft (about 1.5 psi/100 ft)</p><h3>8.2 Darcy-Weisbach</h3><p><strong>h_f = f x (L/D) x (V^2/2g)</strong></p><p>More accurate, applicable to all fluids.</p><h3>8.3 Velocity Limits</h3><table border="1" style="width:100%;border-collapse:collapse;"><tr><th>Service</th><th>Max fps</th><th>Range</th></tr><tr><td>Chilled water</td><td>10</td><td>4-8</td></tr><tr><td>Condenser</td><td>12</td><td>6-10</td></tr><tr><td>Hot water</td><td>8</td><td>4-6</td></tr><tr><td>Dom. hot</td><td>5</td><td>3-5</td></tr><tr><td>Dom. cold</td><td>8</td><td>4-6</td></tr></table><p>Min 2 fps to prevent stratification/settling.</p><h3>8.4 Sizing Procedure</h3><ol><li>Calculate GPM from load</li><li>Select friction rate (4 ft/100 ft typical)</li><li>Find size from chart</li><li>Check velocity</li><li>Calculate total head</li></ol><h3>8.5 Fitting Equivalent Lengths (ft)</h3><table border="1" style="width:100%;border-collapse:collapse;"><tr><th>Fitting</th><th>2 in.</th><th>4 in.</th><th>6 in.</th></tr><tr><td>90 std elbow</td><td>5</td><td>11</td><td>14</td></tr><tr><td>90 long radius</td><td>3</td><td>6</td><td>9</td></tr><tr><td>45 elbow</td><td>2</td><td>5</td><td>7</td></tr><tr><td>Tee branch</td><td>10</td><td>22</td><td>30</td></tr><tr><td>Gate valve</td><td>1</td><td>2</td><td>3</td></tr><tr><td>Check valve</td><td>12</td><td>22</td><td>30</td></tr></table><h3>8.6 Total Head</h3><p>Pipe friction + Fitting losses + Equipment (chiller 10-30 ft, coil 5-15 ft) + Control valves (3-10 ft)</p><h3>8.7 Materials</h3><ul><li><strong>Black steel Sch 40:</strong> Most common hydronic</li><li><strong>Copper Type L:</strong> Domestic, small hydronic</li><li><strong>CPVC:</strong> Domestic hot, some chilled</li><li><strong>PEX:</strong> Radiant, domestic</li><li><strong>Grooved:</strong> Large chilled water</li></ul>
Section 9: Pump Selection and Head Calculations
<h3>Learning Objectives</h3><ul><li>Select pumps based on flow and head</li><li>Read and apply pump curves</li><li>Calculate NPSH</li></ul><h3>9.1 Pump Types</h3><ul><li><strong>End-Suction:</strong> Horizontal, most common</li><li><strong>In-Line:</strong> Same centerline, space-saving</li><li><strong>Split-Case:</strong> Double suction, large capacity</li><li><strong>Vertical:</strong> Motor above, compact</li></ul><h3>9.2 Pump Curves</h3><p>X: GPM, Y: TDH (ft), Efficiency contours, NPSH required</p><h4>Selection</h4><ol><li>Calculate GPM from load</li><li>Calculate total head</li><li>Select pump through duty point</li><li>Verify 80-120% of BEP</li><li>Check NPSHa > NPSHr + 2-3 ft</li></ol><h3>9.3 Total Dynamic Head</h3><p><strong>TDH = Static + Pressure + Friction + Velocity</strong></p><p><strong>Closed loop:</strong> TDH = Friction only (static cancels)</p><p><strong>Open system:</strong> TDH = Static lift + Friction</p><h3>9.4 NPSH</h3><p><strong>NPSHa = Hatm + Hs - Hf - Hvp</strong></p><ul><li>Hatm = 33.9 ft at sea level</li><li>Hs = Static suction head</li><li>Hf = Suction friction losses</li><li>Hvp = Vapor pressure head</li></ul><p><strong>NPSHa >= NPSHr + 2-3 ft</strong></p><h3>9.5 Affinity Laws</h3><ul><li>Q2/Q1 = N2/N1</li><li>H2/H1 = (N2/N1)^2</li><li>P2/P1 = (N2/N1)^3</li></ul><p>80% speed = 51% power!</p><h3>9.6 Parallel/Series</h3><p><strong>Parallel:</strong> Flow adds, head same. Capacity staging.</p><p><strong>Series:</strong> Head adds, flow same. High head needs.</p><h3>9.7 Efficiency</h3><p><strong>Eff = (GPM x TDH) / (3960 x BHP)</strong></p><p>Typical 70-88%</p><h3>9.8 Installation</h3><ul><li>10 diameters straight at suction</li><li>Eccentric reducer (flat up)</li><li>Flex connectors both sides</li><li>Check and isolation at discharge</li><li>Gauges at suction and discharge</li></ul>
Section 10: Air Handling Unit Selection
<h3>Learning Objectives</h3><ul><li>Select AHUs based on airflow and coils</li><li>Specify cooling/heating coils and filters</li><li>Understand configurations and options</li></ul><h3>10.1 AHU Types</h3><ul><li><strong>Packaged:</strong> Factory-assembled, standard. Lower cost, faster.</li><li><strong>Custom:</strong> Built to spec. Double-wall, thermal break.</li></ul><h4>Component Sequence</h4><ol><li>OA/RA/EA dampers</li><li>Filters (pre + final)</li><li>Preheat coil</li><li>Cooling coil</li><li>Heating coil</li><li>Fan section (VFD)</li><li>Sound attenuator</li><li>Humidifier</li></ol><h3>10.2 Cooling Coil</h3><ul><li>EAT: DB/WB and CFM</li><li>LAT: 52-55 F typical</li><li>EWT: 42-45 F</li><li>Delta T: 10-14 F</li><li>Face velocity: 400-550 fpm (500 common)</li></ul><p><strong>Face Area = CFM / Velocity</strong></p><p>Example: 20,000 CFM / 500 fpm = 40 SF</p><h3>10.3 Heating Coil</h3><ul><li><strong>Hot Water:</strong> 140-180 F, 1-2 rows</li><li><strong>Steam:</strong> Distributing tube, vacuum breaker</li><li><strong>Preheat:</strong> Glycol or steam, freeze protection</li></ul><h3>10.4 Filters (MERV)</h3><table border="1" style="width:100%;border-collapse:collapse;"><tr><th>MERV</th><th>Efficiency</th><th>Application</th></tr><tr><td>1-4</td><td>Under 20%</td><td>Residential, prefilter</td></tr><tr><td>5-8</td><td>20-35%</td><td>Commercial prefilter</td></tr><tr><td>9-12</td><td>40-75%</td><td>Commercial final</td></tr><tr><td>13-16</td><td>80-95%</td><td>Hospital, cleanroom</td></tr><tr><td>HEPA</td><td>99.97%+</td><td>OR, critical</td></tr></table><p>Initial: 0.15-0.30 in. w.g. Final (dirty): 0.50-1.0 in. Design for dirty.</p><h3>10.5 Fan Section</h3><ul><li>Centrifugal (FC, BI, Airfoil)</li><li>Plenum/plug fans</li><li>Fan arrays for redundancy</li></ul><p>VFD required over 5-10 HP per codes.</p><h3>10.6 Energy Recovery</h3><ul><li>Enthalpy wheel: 70-80%</li><li>Sensible wheel: 65-75%</li><li>Plate HX: 50-70%</li><li>Run-around: 45-55%</li></ul>
Section 11: Terminal Unit Selection
<h3>Learning Objectives</h3><ul><li>Select VAV boxes for VAV systems</li><li>Specify fan coil units</li><li>Choose unit heaters and other terminals</li></ul><h3>11.1 VAV Terminals</h3><h4>Types</h4><ul><li><strong>Cooling-Only:</strong> Modulating damper</li><li><strong>With Reheat:</strong> HW coil or electric heater</li><li><strong>Series Fan-Powered:</strong> Fan runs continuously</li><li><strong>Parallel Fan-Powered:</strong> Fan during heating only</li></ul><h4>Selection Parameters</h4><table border="1" style="width:100%;border-collapse:collapse;"><tr><th>Parameter</th><th>Range</th></tr><tr><td>Max CFM</td><td>50-5,000</td></tr><tr><td>Min CFM</td><td>20-50% of max</td></tr><tr><td>Inlet velocity</td><td>1,000-2,500 fpm</td></tr><tr><td>Pressure drop</td><td>0.2-0.5 in. w.g.</td></tr><tr><td>NC rating</td><td>25-35</td></tr></table><h3>11.2 Fan Coil Units</h3><h4>Configurations</h4><ul><li><strong>Vertical:</strong> Under windows</li><li><strong>Horizontal:</strong> Above ceiling</li><li><strong>Cassette:</strong> Exposed ceiling panel</li></ul><h4>Piping</h4><ul><li><strong>Two-pipe:</strong> Changeover seasonal</li><li><strong>Four-pipe:</strong> Separate H/C coils</li></ul><table border="1" style="width:100%;border-collapse:collapse;"><tr><th>Parameter</th><th>Range</th></tr><tr><td>Capacity</td><td>6,000-48,000 BTU/hr</td></tr><tr><td>Airflow</td><td>200-1,600 CFM</td></tr><tr><td>External SP</td><td>0-0.5 in. w.g.</td></tr></table><h3>11.3 Unit Heaters</h3><ul><li><strong>Hot Water:</strong> 10,000-500,000 BTU/hr</li><li><strong>Gas:</strong> Direct or indirect, 80-93% eff, must vent</li><li><strong>Infrared:</strong> Radiant, heats objects not air, great for high-bay</li></ul><h3>11.4 Other Terminals</h3><ul><li><strong>Baseboard:</strong> Finned-tube, perimeter heating</li><li><strong>Radiant Panels:</strong> Heating 100-300 BTU/hr/SF, Cooling 15-40 BTU/hr/SF</li><li><strong>Chilled Beams:</strong> Induced air through coil. MUST control dewpoint!</li></ul>
Section 12: Noise and Vibration Considerations
<h3>Learning Objectives</h3><ul><li>Understand NC and RC noise ratings</li><li>Calculate sound levels in spaces</li><li>Specify vibration isolation</li></ul><h3>12.1 Noise Fundamentals</h3><ul><li><strong>Sound Power (Lw):</strong> Energy from source (manufacturer data)</li><li><strong>Sound Pressure (Lp):</strong> What we hear (depends on distance/room)</li></ul><p>Octave bands: 63, 125, 250, 500, 1000, 2000, 4000, 8000 Hz</p><h3>12.2 NC Curves</h3><p>Noise Criteria - max octave band levels for background noise.</p><table border="1" style="width:100%;border-collapse:collapse;"><tr><th>Space</th><th>NC</th></tr><tr><td>Concert hall, theater</td><td>15-20</td></tr><tr><td>Private office, bedroom</td><td>25-30</td></tr><tr><td>Conference room</td><td>25-30</td></tr><tr><td>Open office</td><td>35-40</td></tr><tr><td>Restaurant, retail</td><td>40-45</td></tr><tr><td>Mechanical room</td><td>50-60</td></tr></table><h3>12.3 RC Curves</h3><ul><li><strong>RC-N:</strong> Neutral - balanced</li><li><strong>RC-R:</strong> Rumbly - excess low freq</li><li><strong>RC-H:</strong> Hissy - excess high freq</li></ul><h3>12.4 HVAC Noise Sources</h3><ul><li>AHU: Fan, motor, casing radiated</li><li>Duct: Regenerated at fittings, breakout through walls</li><li>Terminal: VAV damper, diffuser turbulence</li></ul><h3>12.5 Noise Control</h3><h4>Source</h4><ul><li>Select quiet equipment</li><li>Larger, slower fans are quieter</li><li>Smooth airflow</li></ul><h4>Path</h4><ul><li><strong>Lining:</strong> 1-2 in. fiberglass</li><li><strong>Silencers:</strong> 3-10+ dB/band</li><li><strong>Plenum:</strong> Lined chambers break path</li></ul><h3>12.6 Vibration Isolation</h3><table border="1" style="width:100%;border-collapse:collapse;"><tr><th>Type</th><th>Deflection</th><th>Application</th></tr><tr><td>Rubber pads</td><td>0.1-0.3 in.</td><td>High-speed equip</td></tr><tr><td>Neoprene</td><td>0.2-0.5 in.</td><td>Fans, small pumps</td></tr><tr><td>Springs</td><td>1-4 in.</td><td>AHU, large pumps</td></tr><tr><td>Air springs</td><td>3-10 in.</td><td>Sensitive equip</td></tr><tr><td>Inertia base</td><td>w/ springs</td><td>Reciprocating</td></tr></table><h4>Guidelines</h4><ul><li>On grade: Springs for low-speed, neoprene high-speed</li><li>Upper floors: Springs required</li><li>Above occupied: Min 2 in. deflection</li><li>Reciprocating: Inertia base + springs</li><li>Flex connectors at isolated equipment</li></ul><h3>12.7 Specifications</h3><ul><li>Max NC/RC per space type</li><li>Require sound power data in submittals</li><li>Specify isolation type and deflection</li><li>Show lining/silencers on drawings</li><li>Field testing for critical spaces</li></ul>
Congratulations!
You have completed the HVAC System Design - Comprehensive Engineering Course training module. Continue your learning journey with our other courses.
View All Courses